【全新视界!】铝合金型材-合金钢管实体诚信经营产品视频,带你领略产品新风尚!
以下是:铝合金型材-合金钢管实体诚信经营的图文介绍
电泳工业铝型材黄变现象的原因总结出以下几点:电泳涂漆本身;氧化导电不良;电泳前水洗不彻底;固化过度;氧化槽液被硝酸污染。1.氧化时工业铝型材导电不良引起的黄变现象:工业铝型材与导电杆接触不良,接点处的电阻就会大增,型材端头就会发热,氧化膜生成过快并伴有烧灼现象,甚至出现氧化膜的粉化。这时的氧化膜有些浑浊,颜色出现黄变,如果再进行电泳生产就会出现非常明显的黄变现象。这种黄变现象一般情况下一排里只有几支,并且基本上都是出现在型材的端头。因此,一定要采取措施来保证工业铝型材与导电杆接触良好。2.电泳前水洗不彻底引起的黄变现象:氧化膜是蜂窝状的,其多孔状的结构就决定了氧化膜孔中会残留硫酸。众所周知,用来电泳的型材如果水洗不彻底,就很有可能出现黄变现象。对于这种黄变现象,一般都认为是氧化膜孔里的酸根与电泳漆反应从而使电泳漆膜发生的黄变,其实这种黄变不是漆膜发生的黄变,而是氧化膜的黄变。正常的氧化膜是清澈、透明的,如果氧化膜孔里残留较多的硫酸根,高温情况下,氧化膜就会与硫酸根发生反应,从而使清澈、透明的氧化膜变得浑浊,透明性下降;同时再加上电泳漆膜的高透明性,对光线的高反射性,从而使这种缺陷得到进一步放大,就形成所说的黄变。因此,电泳前的几道水洗非常关键,不仅要保证水洗水质,还要保证水洗温度和水洗时间。3.氧化槽液被硝酸污染而引起的黄变现象:为了达到较好的除灰效果,在中和槽里添加一定比例的硝酸本无可厚非,但是如果中和后水洗控制不好,硝酸就会被带到氧化槽,工业铝型材氧化槽里的硝酸根达到一定浓度时,就会对氧化造成一定的影响,甚至引起电泳型材的黄变。氧化过程中,进入氧化膜孔中的硝酸根会对氧化膜起到刻蚀作用,腐蚀氧化膜的阻挡层,使氧化膜孔变深,进而改变膜孔的结构。这种腐蚀对氧化膜产生两种影响:1、氧化膜的阻挡层变薄,与铝基体接合的紧密性变差,进而造成氧化膜的附着力降低。2、在正常水洗条件下,很难把膜孔中的硫酸根除去。这种条件下所生产的电泳型材同样会有黄变现象。怎样来避免这种黄变现象呢?在烫洗槽前的纯水槽中添加中和剂,调PH值8~9.5,水洗2~3分钟,用胺根中和氧化膜孔中的硫酸根,再进行电泳生产,就不会出现黄变现象了。4.固化过度引起的黄变现象:目前市场上所使用电泳漆基本都是在180℃X30min条件下烘烤固化的。在正常条件下,漆膜基本上不会发生黄变。但是有的铝型材生产厂家固化炉温度很不均匀,局部温度甚至相差30℃以上;有的厂家固化炉的温控系统差,实际温度与显示温度相差太大,质量较差的电泳漆在这种条件下黄变现象非常明显,甚至像着了色似的。质量好的电泳漆对这种极端条件的承受能力比较强,有的电泳漆即使在230℃的条件下烘烤,也不会发生黄变现象。为了防止黄变的产生,炉温的均匀性、温控系统的灵敏性是必需的,使用质量好的电泳漆也是必要的。5.电泳漆本身引起的黄变现象:阳极电泳漆主要是由丙烯酸树脂和胺基树脂组成的。电泳型材在烘烤过程中,树脂发生交联反应,生成平整、透明的涂膜。但是有些电泳漆厂家由于生产工艺的不成熟,或者是为了降低成本使用质量较差的化工原料,从而导致其固化范围比较窄。烘烤稍有不足,漆膜硬度不够;烘烤稍稍过了头,漆膜就会发生黄变,给生产管理带来一定的困难。所以建议大家还是选用产品质量稳定、有一定知名度的涂料供应商。
低中压锅炉管价格一直是客户关注的一个问题,关键是 低中压锅炉管配置决定 低中压锅炉管价格,不同配置 低中压锅炉管价格相差很大。影响 低中压锅炉管价格的因素有很多,像用的材质,配置要求等,才能给你一个合理的报价。建议拨打我们的客服热线,根据不同的需求给你一个准确的 低中压锅炉管报价!
6082合金:继6N01合金普及以来,1972年成型的6082合金得到铁路装备制造部门的关注,此合金的强度介于7N01合金与6N01合金强度之间。6082-T5方形管的抗拉强度Rm(喷雾在线淬火)符合底架梁的相应要求。基础实验表明,此合金可以在相应领域实地应用。然而,若要在铁路装备部门广泛推广,仍需要做大量工作。对于30年前曾被视为万无一失的铝制列车的装配节点的疲劳强度,由于列车载重条件改变和结构轻量化,已不适用于当前的新型高速列车,但是这与高寒地区的温度无关,因为零下几十摄氏度对铝合金来说真是“小试锋芒”,算不了什么低温,同时温度越低,铝结构显得越强韧。泡沫铝:高速列车具有轴重轻、频繁加减速和超载运行等特点,要求车体结构在满足强度、刚度、、舒适的前提下尽可能轻量化。显然,超轻泡沫铝所具备的高比强、高比模、高阻尼等性能,与这些要求非常一致。国外对泡沫铝在高速列车上的应用进行了详细地研究与评估,发现填充泡沫铝的钢管吸能本领比空管的高35%~40%,抗弯强度提高40%~50%,从而可使车厢立柱和隔板更坚固,不易坍塌;用泡沫铝填充机车头部缓冲区,可提高吸收冲击能的能力;用10mm厚泡沫铝和薄铝板制造的夹心板比原钢板质量轻50%,而刚度却提高了8倍。目前,中国高铁有关单位正在研究用泡沫铝夹心板制备高铁车厢地板和车门的可行性。为加快解决下一代高铁面临的一系列重大科技问题,铁道部门和中国科学院联合成立了先进轨道交通力学研究中心,在对高速列车材料与结构可靠性、噪声降低理论与技术等方面展开攻关研究,其中有相当一部分内容与超轻泡沫铝有关。随着高速列车运行速度的不断,产生的噪声对乘客乘坐舒适度与周边环境的影响已成为高铁发展的关键制约因素之一。相对于车内噪声,车外噪声对环境的影响更为严重,而高速列车通过隧道或两列高铁在隧道内交汇时产生的混响噪声及由此产生的震动具有相当强的破坏力,如不有效控制,将可能成为高铁的一大发展障碍。为了降低高速列车的噪声污染,必须在经过人口密集区的铁路两侧及隧道内设置屏障。超轻开孔泡沫铝的主要功能之一是吸声,而且该性能可通过改变孔型或声结构调整。此外,泡沫铝还具有良好的防腐、耐气候和加工性能,因此是野外声屏障的良好吸声材料。
说到船用铝板,大家*熟悉的要数5083铝板了。船用铝板是铝板产品研发应用的新兴领域,目前船板的生产能力已成为衡量铝板厂家综合实业的重要指标。那么,船舶制造厂家为何如此青睐5083铝板?5083铝板属于Al-Mg系合金,中等强度,具有耐蚀性好、焊接性优良、冷加工性较好的优势,广泛用于制造飞机油箱、油管、交通车辆、船舶钣金件、仪表、街灯支架、铆钉、五金制品、电器外壳等。在船舶制造领域,多采用5083H116/H321/H112状态的铝板,应用于船舶甲板、发动机台座、船侧、船底外板等部位。5083铝板满足船用铝板的选材要求:1、较高的比强度和比模量。船舶的结构强度和尺寸与材料的屈服强度和弹性模量密切相关,由于铝合金的弹性模量和密度大体相同,合金元素的添加也影响甚,因此在一定范围内提高屈服强度对减轻舰船结构有力。5083铝板属于中等强度,能同时具备优良的耐蚀性和可焊接性。2、焊接性优良。5083铝板具有良好的焊接抗裂性,在焊接时不容易出现裂纹现象。3、耐蚀性优良。耐蚀性能是船用合金的主要标志之一,5083铝板是典型的防锈铝板,耐腐性好,能适应恶劣的海洋环境,经久耐用。4、密度小。铝合金比重小,能减轻船板重量,节省能耗,增加载重。5、环保。铝合金不燃烧,遇火,而且回收利用率高,可循环再利用,环保性好。
通过温度控制提高挤压铝型材产量,通常,如果没有非预定的停机时间,那么*大产量主要决定于挤压速度,而后者受制于四个因素,其中三个固定不变而另一个则是可变的。 个因素是挤压机的挤压力,挤压力大的可在锭坯温度较低时顺利地挤压;第二个因素是模具设计,挤压时金属与模壁的摩擦通常可使通过的铝合金的温度上升35~62℃;第三个因素是被挤压合金的特性,是限制挤压速度的不可控制的因素,型材的出口温度一般不可超过540℃,否则,材料表面质量会下降,模痕明显加重,甚至出现粘铝、凹印、裂缝、撕裂等。*后一个因素是温度及其受控程度。如果铝型材挤压机的挤压力不够大,很难顺利挤压或甚至出现塞模现象而挤不动时,就可提高锭坯温度,但挤压速度应低些,以防材料的出口温度过高。每一个合金都有其特定的*优的挤压(锭坯)温度。生产实践证明,锭坯温度*好保持在430℃左右(挤压速度≥16mm/s时)。6063合金型材的出模温度不得超过500℃,6005合金的*高出口温度为512℃,6061合金的*好不大于525℃。出模温度的不大变化也会影响产品的产量与质量。挤压筒温度也是很重要的,特别应注意预热阶段的温度升高,应避免各层之间产生过大的热应力,*好是使挤压筒与衬套同时升高到工作温度。预热升温速度不得大于38℃/h。*好的预热规范是:升高到235℃,保温8h,继续升温到430℃,保温4h后,才投入工作。这样不但能保证内外温度均匀一致,而且有足够的时间一切内部热应力。当然在炉内加热挤压筒是*佳的预热方式。在挤压过程中,挤压筒温度应比锭坯温度低15~40℃。如果挤压速度过快,以致挤压筒温度上升到高于锭坯温度,就要设法使挤压筒温度下降,这不但是一件麻烦的工作,而且产量会下降。在生产速度上升过程中,有时受电偶控制的加热元件会被切断,可是挤压筒温度仍在上升。如果挤压筒温度高于470℃,挤压废品就会上升。应根据不同的合金确定理想的挤压筒温度。千万不要认为预热挤压筒是在浪费时间、消耗能源。某工厂为赶生产任务,一方面用内部电阻元件加热,另一方面又以液化气烧嘴加热。在这种情况,温度无法测量与控制,会产生巨大的热应力,内衬温度高,膨胀比外套的快,以致挤压筒裂开,并听到“炸裂”的声音。挤压轴在工作过程中会积蓄内应力,这种应力大到一定程度会产生疲劳裂纹,一旦受到非轴向的径向力作用就会断裂。因此,挤压轴的累计工作时间达到4500h后,*好进行一次应力处理,在430~480℃保温12h,然后随炉冷却到50℃以下。遗憾的是,我国很少有工厂照此处理。
生产优质表面建筑型材时,对挤压垫温度也应严格控制,以减少表面色调不一致废品量。固定挤压垫的质量比活动的好得多,能积聚更多的热量,因而能降低锭坯端头温度,能减少杂质进入型材内,有助于提高产量。美国卡斯图尔公司(Castool)采用压缩空气冷却挤压垫与挤压轴,使其温度降到50℃左右。模具温度对于获得高的产量起着重要的作用,一般不得低于430℃;另方面,也不得过高,否则,不但硬度可能下降,同时会产生氧化,主要在工作带。在模具加热过程中,应避免模具之间紧靠着,阻碍空气流通。*好采用带格的箱式加热炉,每个模放于一个单独的箱内。锭坯在挤压过程中的温度升高可达40℃左右或更高些,升高量主要决定于模具设计。为了获得*大产量,对各项温度决不可忽视,应记录各个温度并严加控制,以找出机台的*大产量与各项温度的关系。然后,铝型材挤压生产厂的员工都应牢记:温度的精密控制,对提高产量是至关重要的。
通过温度控制提高挤压铝型材产量,通常,如果没有非预定的停机时间,那么*大产量主要决定于挤压速度,而后者受制于四个因素,其中三个固定不变而另一个则是可变的。 个因素是挤压机的挤压力,挤压力大的可在锭坯温度较低时顺利地挤压;第二个因素是模具设计,挤压时金属与模壁的摩擦通常可使通过的铝合金的温度上升35~62℃;第三个因素是被挤压合金的特性,是限制挤压速度的不可控制的因素,型材的出口温度一般不可超过540℃,否则,材料表面质量会下降,模痕明显加重,甚至出现粘铝、凹印、裂缝、撕裂等。*后一个因素是温度及其受控程度。如果铝型材挤压机的挤压力不够大,很难顺利挤压或甚至出现塞模现象而挤不动时,就可提高锭坯温度,但挤压速度应低些,以防材料的出口温度过高。每一个合金都有其特定的*优的挤压(锭坯)温度。生产实践证明,锭坯温度*好保持在430℃左右(挤压速度≥16mm/s时)。6063合金型材的出模温度不得超过500℃,6005合金的*高出口温度为512℃,6061合金的*好不大于525℃。出模温度的不大变化也会影响产品的产量与质量。挤压筒温度也是很重要的,特别应注意预热阶段的温度升高,应避免各层之间产生过大的热应力,*好是使挤压筒与衬套同时升高到工作温度。预热升温速度不得大于38℃/h。*好的预热规范是:升高到235℃,保温8h,继续升温到430℃,保温4h后,才投入工作。这样不但能保证内外温度均匀一致,而且有足够的时间一切内部热应力。当然在炉内加热挤压筒是*佳的预热方式。在挤压过程中,挤压筒温度应比锭坯温度低15~40℃。如果挤压速度过快,以致挤压筒温度上升到高于锭坯温度,就要设法使挤压筒温度下降,这不但是一件麻烦的工作,而且产量会下降。在生产速度上升过程中,有时受电偶控制的加热元件会被切断,可是挤压筒温度仍在上升。如果挤压筒温度高于470℃,挤压废品就会上升。应根据不同的合金确定理想的挤压筒温度。千万不要认为预热挤压筒是在浪费时间、消耗能源。某工厂为赶生产任务,一方面用内部电阻元件加热,另一方面又以液化气烧嘴加热。在这种情况,温度无法测量与控制,会产生巨大的热应力,内衬温度高,膨胀比外套的快,以致挤压筒裂开,并听到“炸裂”的声音。挤压轴在工作过程中会积蓄内应力,这种应力大到一定程度会产生疲劳裂纹,一旦受到非轴向的径向力作用就会断裂。因此,挤压轴的累计工作时间达到4500h后,*好进行一次应力处理,在430~480℃保温12h,然后随炉冷却到50℃以下。遗憾的是,我国很少有工厂照此处理。
生产优质表面建筑型材时,对挤压垫温度也应严格控制,以减少表面色调不一致废品量。固定挤压垫的质量比活动的好得多,能积聚更多的热量,因而能降低锭坯端头温度,能减少杂质进入型材内,有助于提高产量。美国卡斯图尔公司(Castool)采用压缩空气冷却挤压垫与挤压轴,使其温度降到50℃左右。模具温度对于获得高的产量起着重要的作用,一般不得低于430℃;另方面,也不得过高,否则,不但硬度可能下降,同时会产生氧化,主要在工作带。在模具加热过程中,应避免模具之间紧靠着,阻碍空气流通。*好采用带格的箱式加热炉,每个模放于一个单独的箱内。锭坯在挤压过程中的温度升高可达40℃左右或更高些,升高量主要决定于模具设计。为了获得*大产量,对各项温度决不可忽视,应记录各个温度并严加控制,以找出机台的*大产量与各项温度的关系。然后,铝型材挤压生产厂的员工都应牢记:温度的精密控制,对提高产量是至关重要的。